C-axis Polarized Optical Study on Thick $Ba_{0.67}K_{0.33}Fe_2As_2$ Single Crystal

B. Cheng^a, Z. G. Chen^a, C. L. Zhang^b, R. H. Yuan^a, T. Dong^a, B. F. Hu^a, W. T. Guo^a, S. S. Miao^a, P. Zheng^a, J. L. Luo^a, G. Xu^a, P. C. Dai^b, and N. L. Wang^a

^aInstitute of Physics of Physics, Chinese Academy of Sciences, Beijing, China ^bDepartment of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee, USA

We report on a c-axis polarized optical measurement on a $Ba_{0.67}K_{0.33}Fe_2As_2$ single crystal. We find that the c-axis optical response is significantly different from that of high-T_c cuprates. The experiments reveal an anisotropic three-dimensional optical response with the absence of the Josephson plasma edge in $R(\omega)$ in the superconducting state. Furthermore, different from the ab-plane optical response, a large residual quasiparticle population down to $T \sim \frac{1}{5}T_c$ was observed in the c-axis polarized reflectance measurement. We elaborate that there exist horizontal nodes for the superconducting gap in regions of the 3D Fermi surface that contribute dominantly to the c-axis optical conductivity.

*B. Cheng, et al, PRB 83 144522 (2011).