Superfluid Density Study of Two-dimensional NbN Films near Superconductor Insulator Transition

Jie Yong^a, K. Il'in^b, M. Siegel^b, and Thomas Lemberger^a

^aDepartment of Physics, The Ohio State University, Columbus, Ohio, USA ^bInstitute of Micro- and Nano-electronic Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany

The superfluid densities of two-dimensional (2D) amorphous NbN films with sheet resistances up to 2 $k\Omega$ have been measured, with the goal of obtaining new insights into quantum and thermal fluctuations near the quantum critical point. Evidence for strong thermal phase fluctuations is found in a Kosterlitz-Thouless-Berezinski-like downturn in superfluid density near T_c , although the downturn occurs at a lower temperature than anticipated by KTB theory for the highest sheet resistance films. Evidence for strong quantum fluctuations is found in a suppression of zero-temperature superfluid density below the BCS value, and a large difference between the T_c determined resistively and the T_c where superfluid appears.