Two-dimensional Quantum Critical Point in Underdoped $Bi_2Sr_2CaCu_2O_{8+x}$ Revealed by Superfluid Density Measurements

Jie Yong^{*a*}, A. Mccray^{*a*}, T.R. Lemberger^{*a*}, Muntaser Naamneh^{*b*}, Amit Kanigel^{*b*}, and M. randeria^{*a*}

^aDepartment of Physics, The Ohio State University, Columbus, Ohio, USA ^bDepartment of Physics, Technion - Israel Institute of Technology, Haifa, Israel

With the goal of comparing quantum critical scaling in a highly anisotropic cuprate with the threedimensional (3D) scaling seen in moderately-anisotropic $YBa_2Cu_3O_{7-\delta}$ (YBCO), a series of both sputtered and pulsed laser deposited $Bi_2Sr_2CaCu_2O_{8+x}$ (Bi-2212) films have been fabricated with a wide range of hole underdoping, such that T_c extends as low as 5 K. For films near optimal doping, superfluid density is linear at low-T, and displays a sharp downturn near T_c . However, with underdoping the sharp downturn gradually fades, and superfluid density becomes roughly linear all the way to T_c . The disappearance of critical thermal fluctuations may be explained, at least in part, by strong quantum critical fluctuations. The superfluid density at T = 0 scales linearly with T_c , which indicates that superconductivity disappears at a 2D quantum critical point (QCP) in Bi-2212, unlike the 3D QCP seen in YBCO. The difference likely traces back to the much higher ab - vs. c-axis anisotropy in Bi-2212.