Observation of a Small Superconducting Energy Gap in K0.7Fe1.8Se2 by Optical Spectroscopy

R. H. Yuan^a, T. Dong^a, G. F. Chen^b, J. B. He^b, D. M. Wang^b, and N. L. Wang^a

^aInstitute of Physics of Physics, Chinese Academy of Sciences, Beijing, China ^bDepartment of Physics, Renmin University, Beijing, China

We report an optical spectroscopy study on the newly discovered iron-selenide superconductor $K_{0.7}Fe_{1.8}Se_2$ In the far-infrared region, there is a clear signature of the superonducting energy gap with a gap ratio $2\Delta/k_BT_c \sim 1.3$, far below the usual weak-coupling BCS value. The large energy gap in the electron Fermi pockets observed by angle-resolved photoemission (ARPES) technique is completely absent in the infrared probe. The complex behavior may imply the presence of both dirty and clean channels of superconductivity. Our measurements also reveal a surprisingly low carrier density for the compound: both the carrier density in the normal state and the condensed carrier density in the superconducting state are about one order smaller than other iron-pnictide superconductors.