${ m NMR}\ { m study}\ { m of}\ { m hole-doped}\ { m iron-pnictide}\ { m superconductor}\ { m Ba}_{1-x}{ m K}_x{ m Fe}_2{ m As}_2\ (x=0.27\sim 1)\ ({ m LT26})$

M. Hirano^a, Y. Yamada^a, T. Saito^a, Y. Murano^a, R. Nagashima^a, H. Fukazawa^{a,c}, Y. Kohori^{a,c}, K. Kihou^{b,c}, C. H. Lee^{b,c}, A. Iyo^{b,c}, and H. Eisaki^{b,c}

^aDepartment of Physics, Chiba University, Chiba, Japan ^bNational Institute of Advanced Industrial Science and Technology, Tsukuba, Japan ^cJST, Transformative Research-Project on Iron Pnictides (TRIP)

 $Ba_{1-x}K_xFe_2As_2$ (BKFA) is hole-doped iron-pnictide superconductor with superconducting transition temperature T_c of 38 K ($x \sim 0.4$) - 3.5 K (x = 1). Recent experiments have revealed the possibility that optimally doped BKFA and one end member of the system KFe₂As₂, have different superconducting gap symmetries, full gap and nodal gap, respectively. We performed the ⁷⁵As nuclear magnetic resonance measurements of BKFA with concentration x = 0.27, 0.39, 0.58, 0.64, and 0.69 in order to determine gap symmetry particularly in over-doped region.

Temperature dependence of spin lattice relaxation rate $(1/T_1)$ below T_c gradually changes from x = 0.39 to 1.0. This suggests that the superconducting gap symmetry changes smoothly from full gap into nodal-line structure. Hence, BKFA doesn't have different symmetry in optimally and end region. One explanation for this gap formation of KFe₂As₂ is horizontal line node.