Transport Properties of the Iron-Oxypnictide Superconductor PrFeAsO_{1-y} in High Magnetic Fields

T. Kida^{a,d}, M. Kotani^a, M. Ishikado^{b,d}, H. Eisaki^{c,d}, and M. Hagiwara^{a,d}

^aKYOKUGEN, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

^bJapan Atomic Energy Agency, Ibaraki 319-1195, Japan

^cAIST, Tsukuba, Ibaraki 305-8568, Japan

^dJST-TRiP, Chiyoda-ku, Tokyo 102-0075, Japan

We report the resistively determined upper critical field H_{c2} of the iron-oxypnictide superconductor PrFeAsO_{1-y} ($y \sim 0.15$), which exhibits superconductivity at $T_c = 44$ K.¹ The resistivity $\rho(H,T)$ was measured with a typical four-probe method in static magnetic fields of up to 14 T and in pulsed magnetic fields of up to 52 T. With increasing magnetic fields, the superconducting transition width of the $\rho(T)$ curve for $H \parallel c$ becomes broader than that for $H \parallel ab$. This behavior is likely to be due to dissipation associated with thermally activated vortex motion. The $H_{c2}(T)$ curves for both $H \parallel ab$ and $H \parallel c$ exhibit a pronounced upward curvature below T_c , and are very different from the conventional oneband Werthamer-Helfand-Hohenberg (WHH) behavior. This result suggests that the iron-oxypnictide superconductor is a multiband system, being consistent with band calculations and angle resolved photoemission spectroscopy (ARPES) results. We demonstrate the results of the two-band analysis for $H_{c2}(T)$ and discuss the anisotropy of H_{c2} on some kinds of iron-based superconductors.

¹M. Ishikado, S. Shamoto, H. Kito, A. Iyo, H. Eisaki, T. Ito, and Y. Tomioka, Physica C 469, 901 (2009).