Intrinsic tunneling study of $\mathrm{Bi_2Sr_{1.6}La_{0.4}CuO_{6+\delta}}$

J. K. Ren^a, Y. F. Ren^a, Ye Tian^a, H. F. Yu^a, D. N. Zheng^a, S. P. Zhao^a, and C. T. Lin^b

^aBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

 b Max-Planck-Institut für Festkörperforschung, Heisenbergstra β e 1, D-70569 Stuttgart, Germany

We report on a tunneling study of submicron $Bi_2Sr_{1.6}La_{0.4}CuO_{6+\delta}$ intrinsic Josephson junctions, whose self-heating was sufficiently suppressed. The tunneling spectra were measured from 4.2 K up to the pseudogap opening temperature of 260 K. The gap value found from the spectral peak position was about 35 meV and had a weak temperature dependence both below and above the superconducting transition temperature of 29 K. Since the superconducting gap should have a value of 10-15 meV, our results indicate that the pseudogap plays an important role in the $Bi_2Sr_{1.6}La_{0.4}CuO_{6+\delta}$ intrinsic tunneling spectroscopy down to the lowest temperature of 4.2 K.