Structures and physical propertis of new types of organic superconductors, A_x picene, A_x coronene and A_x phenanthrene

Y. Kubozono^a and T. Kambe^b

^aResearch Laboratory for Surface Science, Okayama University, Okayama 700–8530, Japan ^bDepartment of Physics, Okayama University, Okayama 700–8530, Japan

New types of organic superconductors are produced by intercalating alkali or alkali earth metal atoms into the solids of three different hydrocarbons, picene, coronene and phnenanthrene. The superconducting transition temperatures, $T_{\rm c}$ s, are 5 – 18 K for these compounds 1 . The K₃picene has two different superconducting phases of $T_{\rm c}=7$ and 18 K, while Rb₃picene has one superconducting phase with $T_{\rm c}$ of 7 K. It has been suggested from the lattice constants that the K and Rb atoms are intercalated into the herringbone stacking layer of picene molecules (intralayer). Very recently, more precise structural determination has been achieved for K_x picene 2 . The lower and upper critical fields for K_3 picene and Rb₃picene gave physical parameters such as Ginzburg-Landau coherence length and magnetic penetration depth. The K₃picene ($T_{\rm c}=7$ K) showed the moderate negative pressure effect by applying pressure up to 10 kbar, in contrast to the positive pressure effect for K₃phenanthrene 3 . In this talk we will fully show the structures and physical properties of K_x picene, Rb_xpicene, K_xcoronene and K_xphenanthrene.

¹R. Mitsuhashi et al. Nature **464**, 76 (2010).

²H. Sawa et al. private communication.

 ^{3}X . F. Chen et al. arXiv:1102.4075v1 in cond-mat.

INVITED PAPER