Intra-band Quasiparticle Interference and Direct Determination of the Anisotropic Superconducting Energy-Gap Structure in LiFeAs

M. P. Allan^{*a,b,c*}, T.-M. Chuang^{*a,b,d*}, A. W. Rost^{*a,c*}, Y. Xie^{*a*}, K. Kihou^{*e*}, H. Eisaki^{*e*}, and J. C. Davis^{*a,b,e,f*}

^a Laboratory of Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
^bCMPMS Department, Brookhaven National Laboratory, Upton, NY 11973, USA

^cSUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY16 9SS, UK ^dInstitute of Physics, Academica Sinica, Nankang, Taipei 11529, Taiwan

^eInstitute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan

^fKavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca , NY 14853, USA

Cooper pairing in iron-based high temperature superconductors is often conjectured to occur via exchange of antiferromagnetic spin-fluctuations. These models generally lead to two characteristics that should be, in principle, accessible to experiments. The first is s_{\pm} symmetry of the order-parameter. The second is that the momentum-space structure of the gap $\Delta_i(\mathbf{k})$ should be markedly anisotropic. While there is growing evidence for s_{\pm} symmetry, direct in plane high-precision spectroscopy of $\Delta_i(\mathbf{k})$ has not been achieved. Here we report temperature dependent intra-band Bogoliubov quasiparticle scattering interference (QPI) in the iron-based superconductor LiFeAs, and we measure directly the strong anisotropy of the gap $\Delta_i(\mathbf{k})$ on the hole-like band. This opens a direct high precision approach to understanding the anisotropic momentum-space structure $\Delta_i(\mathbf{k})$, and to testing spin-fluctuation exchange pairing theories, in iron-based superconductors.