Theoretical Study of Electronic States in $Ca_{2-x}Sr_xRuO_4$

N. Arakawa and M. Ogata

Department of Physics, The University of Tokyo, Japan

The discovery of unconventional superconductivity in $\text{Sr}_2\text{RuO}_4^1$ evokes considerable interest about the electronic properties of ruthenates. One of the related compounds, $\text{Ca}_{2-x}\text{Sr}_x\text{RuO}_4$, has rich ground states and the origin of these ground states has not been clarified yet.² Most surprisingly, a heavy-mass Fermi liquid behavior is observed at x = 0.5.³

In this presentation, we investigate electronic states in $\operatorname{Ca}_{2-x}\operatorname{Sr}_x\operatorname{RuO}_4$ by using the Gutzwiller approximation of the three-orbital Hubbard model. We obtain the renormalization factor for each Ru t_{2g} -orbital as a function of the on-site Couloumb interactions and discuss the relation with the experimental result.⁴ We also address the possibility of an orbital-selective Mott transition.⁵⁶

¹Y. Maeno *et al.*, Nature (London) **372**, 532 (1994).

²S. Nakatsuji and Y. Maeno, Phys. Rev. Lett. **84**, 2666 (2000).

³S. Nakatsuji *et al.*, Phys. Rev. Lett. **90**, 137202 (2003).

⁴M. Neupane *et al.*, Phys. Rev. Lett. **103**, 097001 (2009).

⁵A. Koga *et al.*, Phys. Rev. Lett. **92**, 216402 (2004)

⁶A. Liebsch and H. Ishida, Phys. Rev. Lett. **98**, 216403 (2007)