Magnetic Excitation of Possible Spin-Peierls System TiOBr

T. Yokoo^a, S. Itoh^a, F. Trouw^b, A. Llobet-Megias^b, J. Taylor^c, and J. Akimitsu^d

^aIMSS, High Energy Accelerator Research Organization (KEK)

^bLujan Neutron Scattering Center, Los Alamos National Laboratory

^cISIS, Rutherford Appleton Laboratory

^dDepartment of Physics, Aoyama-Gakuin University

Newly proposed spin-Peierls system TiOX (X: Cl, Br) has been revealed showing exotic structural and magnetic properties such as a successive phase transition, one-dimensional (1D) nature associated with orbital ordering of Ti ions and super-lattice structure being related to the Peierls instability. It is pointed out that resulting only from an arrangement of Ti d_{xy} orbital, the formation of 1D spin chains and the spin-Peierls transition will be realized. Recently, it has been demonstrated that TiOBr also exhibits two successive phase transitions similar to TiOCl at $T_{c1}=27$ K and $T_{c2}=47$ K. Here we carried out inelastic neutron experiments in order to see the evidence of spin-Peierls transition. The inelastic spectrum with a large amount of poly crystalline sample of TiOBr shows the localized signal in the vicinity of the magnetic zone center Q=0.9 Å⁻¹. Observed spin gap like signal lies at energy of $\Delta E \sim 10$ meV. The gap energy in TiOBr is expected much higher from measured thermodynamic properties and by analogy with TiOCl. Constant Q cuts of the observed S(Q, E) map show some Q-dependent structure in its intensity indicating the signal is sample oriented. The Q structure quite reveals the intensity is well explained by the powder averaged dynamical structure.