Extremely broad hysteresis in the magnetization process of α -Dy₂S₃ single crystal induced by high field cooling

S. Ebisu^a, K. Koyama^{*b}, T. Horikoshi^a, M. Kokita^a, and S. Nagata^a

 a Graduate School of Materials Sci. and Eng., Muroran Inst. of Tech., Muroran 050-8585, Japan $^b{\rm HFLSM},$ Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

We have investigated magnetization process of α -Dy₂S₃ single crystal after cooling in the high magnetic field of 18 T. According to the previous report¹, which treats the anisotropic magnetization process after Z.F.C. (zero field cooling), the magnetization along the *a*-axis of orthorhombic system is smallest of those along three crystallographic axes at the conditions of T = 1.5 K and $\mu_0 H = 18$ T. The value for one Dy atom is small as 6 μ_B which corresponds to 60 % of full saturation moment. In the present study, the magnetization under the field of 18 T along the *a*-axis on the cooling process from 150 K shows step-like rises at 70 and 40 K and reaches about 9 μ_B at 1.5 K. After cooling, the magnetization isotherm of 1.5 K shows step-like drops at 3.0 and 1.7 T while decreasing field, and comes to 0 μ_B at 0 T. Then, while increasing field, the magnetization demonstrates a similar curve to that obtained after ZFC without step-like rise below 13.1 T. At $\mu_0 H = 13.1$ T, the magnetization process yields extremely broad hysteresis having width of $\mu_0 \Delta H = 11.4$ T. Such hystereses having different widths are observed also at 4.2 and 10 K.

*present address: Graduate School of Sci. and Eng., Kagoshima Univ., Kagoshima 890-0065, Japan ¹S. Ebisu, K. Koyama, H. Omote, S. Nagata, J. Phys.: Conf. Ser. **150**, 042027 (2009).