Substrate-Dependent Bonding Anisotropy of Epitaxial Multiferroic $DyMnO_3$ Thin Films

K.T. Lu, T.L. Chou, S.C. Haw, J.M. Lee, S.A. Chen, and J.M. Chen

National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan, R.O.C.

We investigated the substrate-dependent electronic structure and anisotropic bonding of the Mn 3d states in DyMnO₃ thin films on SrTiO₃(001) and LaAlO₃(110) substrates using polarization-dependent x-ray absorption spectroscopy (XAS) at O K-, Mn L- and Mn K-edges for three polarizations, E \parallel a, E \parallel b and E \parallel c. Polarization-dependent x-ray absorption spectra at O K-, Mn L_{2,3}- and Mn K-edges of orthorhombic DyMnO₃/LaAlO₃(110) thin films show a strong polarization dependence, whereas orthorhombic DyMnO₃/SrTiO₃(001) thin films show nearly isotropic spectral structure. The main peak in polarized Mn L_{2,3}-edge XAS spectra of DyMnO₃/LaAlO₃(110) thin films for the E \parallel b polarization lies at a lower energy than for polarizations E \parallel a and E \parallel c. This indicates a great anisotropy in Mn 3d-O 2p hybridization, reflecting an orbital ordering and a highly anisotropic coplanar Mn-O bonding in DyMnO₃/LaAlO₃(110) thin films. Orbital ordering of e_g -orbital and the highly anisotropic in-plane Mn-O bonding is an indispensable factor to the formation of complicated incommensurate modulated magnetic structures observed in orthorhombic DyMnO₃. The present results provide important implications for the microscopic understanding of the multiferroic DyMnO₃.