Ultra-sensitive measurement of magnetisation dependent chemical potential in ferromagnetic materials

C. Ciccarelli^a, A. Irvine^a, J. Wunderlich^b, R. Campion^c, B.L. Gallagher^c, and A.J. Ferguson^a

^aCavendish Laboratory, University of Cambridge, Cambridge, U.K.

^bHitachi Cambridge Laboratory, Cambridge, U.K. and Institute of Physics ASCR, v.v.i., Cukrovarnicka 10, 162 53 Praha 6, Czech Republic

^cSchool of Physics and Astronomy, University of Nottingham, Nottingham, U.K.

We quantify the chemical potential anisotropy in ferromagnetic materials. Aluminium single electron transistors (SETs) are lithographically fabricated on top of a planar gallium manganese arsenide substrate which acts as an electrostatic gate. The conductance variation of the SET provides a direct probe of the magnetisation dependent change in the chemical potential. These experiments contrast with previous demonstrations of Coulomb blockade anisotropic magneto-resistance (CB-AMR)^{1 2} since, in our case, the electron transport is decoupled from the magnetic element. Furthermore, since any ferromagnetic material can be used as the electrostatic gate we demonstrate a universal technique to determine the magnetic anisotropy of the chemical potential.

¹J. Wunderlich, et al., Phys. Rev. Lett. **97**, 077201 (2006). ²A. Bernand-Mantel, et al., Nature Physics **5**, 920 (2009).