Unusual Magnetism of the Eu Based Compounds - $EuB_{6-x}C_x$, $EuZn_2As_2$: the Low Temperature Electron Spin Resonance (ESR) Study

Yu. Goryunov^a, A. Levchenko^b, and A. Nateprov^c

^aKazan Physical-Technical Institute, Russian Academiy of Science, Kazan, Russia ^bInstitute of Material Science Problem, National Academy of Science of Ukraine, Kiev, Ukraine ^cInstitute of Applied Physics, Academy of Sciences of Moldova, Kishinev, Moldova

EuCd₂Sb₂ and EuZn₂As₂ (sp.gr. $P\overline{3}m1$) are anti-ferromagnetic (AFM) with $\Theta_p \sim -6.5$ K and -16.5 K and their resistances are metal- and semiconductor-like, respectively. EuB_{6-x}C_x (sp.gr. $Pm\overline{3}m$) is semimetal, FM or AFM ($\Theta_p \sim \pm 18K$) depending on content x of carbon. The ESR measurements of Θ_p were performed on frequency 9.3 GHz in TE₁₀₂ rectangular cavity in the temperature range from 4.2 to 300K. Well known, intensity $\chi_{ESR}(T)$ of ESR signal is proportional magnetic susceptibility. In general, the magnetic susceptibility is a tensor. Because the view of the Curie-Weiss's law can depend on directions. Surprising, but it is quite explainable that the paramagnetic temperatures Θ_p , obtained for EuCd₂Sb₂ and EuZn₂As₂ from the $1/\chi_{ESR}(T)$ dependence, have positive sign. For EuB_{6-x}C_x Θ_p was $\sim +8$ K in case of a magnetic field along [111] axis, and $\Theta_p \sim -7$ K (!) for the field along [100] axis. Large deviation ($\Delta g \sim 0.03$) of the g-factor from g=1.99 free Eu²⁺ ion indicates on the strong hybridization of the f-states Eu²⁺ with the p- s- states of the band electrons and possible formation of Kondo-like bound states. The obtained data are interpreted in terms of indirect exchange interaction between localized magnetic moments of Eu²⁺ by the electrons of the valence band (Bloembergen-Rowland's modified RKKY interaction).