Ultrasonics in the two-dimensional dimer spin system YbAl₃C₃

Y. Nakanishi^a, F. Shichinomiya^a, M. Koseki^a, G. Koseki^a, M. Nakamura^a, M. Kosaka^b, and M. Yoshizawa^a

^aGraduate School of Frontier Materials Function Engineering, Iwate University Morioka 020-8551, Japan ^bDepartment of Physics, Saitama University Saitama 338-8570, Japan

We report results of sound velocity, i.e., elastic constant measurements in the two-dimensional dimer spin system YbAl₃C₃. This system exhibits a clear phase transition at $T^* = 80$ K, evidenced by the specific heat and elastic constant measurements.¹ No significant anomaly, however, was observed in the magnetic susceptibility crossing T^* , suggesting a non-magnetic origin of the phase transition. Initially, a quadrupolar ordering scenario was proposed by our group. Since a reference system LuAl₃C₃ also exhibits the same phase transition confirmed by the specific heat measurement, it was commonly understood that a quadrupolar moment was not a primary order parameter below T^* . Instead, a dimer spin model was proposed then.² The longitudinal C_L and transverse C_T elastic constants of the poly crystal sample show a pronounced anomaly in sound velocity at low temperatures and in applied magnetic field. Below 1.5 K, these constants demonstrates a softening with increasing field close to the meta-magnetic transition field, $B_m \approx 7.5$ T. The ultrasonic results are analyzed with a theory based on magneto-elastic coupling. We can obtain good qualitative agreement between theoretical results and experimental ones.

¹M. Kosaka *et al*, J. Phys. Soc. Jpn. **74**, 2413 (2005).

²A. Ochiai et al, J. Phys. Soc. Jpn. **76**, 123703 (2007).