Giant Skyrmion and Skyrmion Burst in Thin Ferromagnetic Films

M. Ezawa

Department of Applied Physics, University of Tokyo, Japan

In this work we investigate topological solitons in thin ferromagnetic films. First, we propose a new mechanism of skyrmion materialization on the basis of the competition between the magnetic dipoledipole interaction (DDI) and the Zeeman interaction. DDIs turn a ferromagnet into a frustrated spin system, which allows a nontrivial spin texture such as a giant skyrmion ($\sim 1\mu$ m) for typical sample parameters. We derive an analytic formula for the skyrmion radius. A giant skyrmion is shown to collapse into a singular point by emitting spin waves (skyrmion burst), when external mangetic field is increased beyond the critical one. A giant skyrmion may well be the magnetic domain already found in a TbFeCo thin film. We also study topological excitations in chiral ferromagnetic thin films such as MnSi and FeCoSi, where the Dzyaloshinskii-Moriya interaction (DMI) dominates the DDI at short distance (~ 40 nm). At finite temperature, topological excitations emerge by the competition between the DMI and the Zeeman effect. They are compact skyrmions, merons and bimerons. A distinguished feature is that the topological charge density is strictly confined within compact domains. We construct a phase diagram in the plane of temperature and magnetic field, which is comprised of the helix, meron, skyrmion-crystal, skyrmion-gas and ferromagnet phases.

M. Ezawa, Phys. Rev. Lett. 105, 197202 (2010): Phys. Rev. B 83, 100408(R) (2011): cond-mat/arXiv:1102.0635.