Substitution Effect on the Magnetic Transitions of Fe₂MnSi $\mathbf{M.~Hiroi}^a$, I. Yano^a, K. Sezaki^a, I. Shigeta^a, M. Ito^a, H. Manaka^b, and N. Terada^b - ^aDepartment of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan - ^b Department of Electrical and Electronics Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan The Heusler compound Fe₂MnSi shows intriguing magnetic properties. It exhibits a ferromagnetic transition at $T_C \sim 220$ K, and, below, another magnetic transition at $T_R \sim 65$ K, which is supposed to be a ferrimagnetic transition. In the present study we investigate the effects of the substitution of Co and V for Fe and Mn, respectively, on these transitions. They are interesting because the end compound Co₂MnSi is considered to be a half-metallic ferromagnet and, moreover, the compounds $(\text{Fe}_{1-y}\text{Co}_y)_2\text{MnSi}$ for larger $y \gtrsim 0.5$) were shown to be candidates for half-metals. Another end compound Fe₂VSi exhibits an antiferromagnetic transition. These transitions of $(\text{Fe}_{1-y}\text{Co}_y)_2\text{MnS}$ $(y \leq 0.1)$ and $\text{Fe}_2\text{Mn}_{1-x}\text{V}_x\text{Si}$ $(x \leq 0.2)$ are investigated with the measurement of magnetization and electrical resistivity. The substitution for either case leads to decreasing T_R and increasing T_C . For $(\text{Fe}_{1-y}\text{Co}_y)_2\text{MnSi}$ T_R appears to vanish at $y \sim 0.07$. For $\text{Fe}_2\text{Mn}_{1-x}\text{V}_x\text{Si}$ T_R appears to vanish in the vicinity of $x \sim 0.2$. For $\text{Fe}_2\text{Mn}_{1.8}\text{V}_{0.2}\text{Si}$ from resistivity measurement in magnetic field T_R is found not to vanish and to be ~ 6 K at 0 T, and decreases with increasing magnetic field. The destruction of this transition is estimated to occur at ~ 6 T. ¹Y.Kondo et al., J. Phys.: Conf. Ser. **150**, 042099 (2009).