Heat Transport of Quasi-One-Dimensional Ising-Like Antiferromagnet $BaCo_2V_2O_8$ in the Longitudinal and Transverse Fields

Z. Y. Zhao^a, X. G. Liu^a, Z. He^b, X. M. Wang^a, C. Fan^a, W. P. Ke^a, Q. J. Li^a, and X. F. Sun^a

^aHefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China

^bFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, People's Republic of China

We study the very-low-temperature thermal conductivity κ of BaCo₂V₂O₈, a quasi-one-dimensional Isinglike antiferromagnetic spin chain material, to probe the magnetic phase transitions induced by transverse and longitudinal magnetic fields, respectively. κ shows nearly isotropic behavior for heat current along or vertical to the spin-chain direction, indicating the magnetic excitation scattering on phonons. In the longitudinal field, κ is always smaller than the zero-field conductivity, and there is a sharp decrease at ~ 4 T in $\kappa(H)$ isotherms, which is related to the quantum phase transition from Néel order to incommensurate state. This is coincide with the H - T phase diagram.¹ Moreover, another dip below 4 T is found and is likely resulted from the spin-flop transition. The case in the transverse field is quite different, in which κ presents a deep minimum at ~ 10 T and this "diplike" feature becomes broader with increasing temperature. This result strongly suggests a newly found field-induced magnetic phase transition.

¹S. Kimura *et al.*, Phys. Rev. Lett. **101**, 207201 (2008); H. Yamaguchi *et al.*, J. Phys. Soc. Jpn. **80**, 033701 (2011).