Spin freezing in geometrically frustrated magnetic molecule Fe30 revealed by NMR

Y. Furukawa^a, E. Micotti^b, A. Lascialfari^b, F. Borsa^b, and P. Kögerler^c

^aAmes Laboratory, and Department of Physics and Astronomy, Iowa State University, Iowa 50011, USA ^bDipartimento di Fisica "A Volta" e Unita'INFM di Pavia, Pavia, Italy ^cInstitute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany

Recently much attention has been paid to peculiar magnetic properties of spin frustrated magnetic molecules. The compound $[Mo_{72}Fe_{30}O_{252}(Mo_2O_7(H_2O))_2(Mo_2O_8H_2(H_2O))(CH_3COO)_{12}(H_2O)_{91}]$ (in short Fe_{30}) has 30 Fe^{3+} (S=5/2) ions occupying the 30 vertices of an icosidodecahedron, which makes a closed spherical structure consisting of 20 spin frustrated triangles with antiferromagnetic (AF) exchange coupling (J=1.57 K) between Fe spins. In order to investigate magnetic properties of Fe_{30} , we have carried out proton nuclear magnetic resonance (NMR) measurements at low temperatures down to T=0.05 K using a $^3He^{-4}He$ dilution refrigerator. From a measurement of nuclear spin-lattice relaxation rates as a function of temperature and external field, fluctuation frequency of Fe^{3+} spins is found to become slower on lowering temperature. Broad proton NMR spectrum was observed at low temperatures below ~ 0.6 K. These resluts indicate spin freezing state at low temperatures in Fe_{30} . We will compare our NMR results with those of a quantum spin system, V_{30} (V^{4+} : S=1/2) with the same structure and discuss the similarities and differences in the magnetic properties of these two systems.