Thermal conductivity of pure and Zn-doped LiCu₂O₂ single crystals

X. G. Liu^a, X. M. Wang^a, W. P. Ke^a, W. Tao^a, X. Zhao^b, and X. F. Sun^a

^aHefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China

^bSchool of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China

LiCu₂O₂ is the first example of Cu-based multiferroic material and is particularly attractive because of its one dimensional spin structure.¹ The competition between the nearest-neighboring ferromagnetic (FM) interaction and the next-nearest-neighboring antiferromagnetic (AF) interaction of Cu²⁺ spins in the spin chain leads to magnetic frustration and a spiral (helicoidal) magnetic order below ~24 K. We study the low-temperature thermal conductivity (κ) of pure and Zn-doped LiCu₂O₂ single crystals. The $\kappa(T)$ of pure LiCu₂O₂ single crystal shows a double-peak behavior, with two peaks locating at 48 K and 14 K, respectively. The different dependences of the peaks on the Zn concentration indicate that the high-T peak is likely due to the phonon transport while the low-T one is attributed to the magnon transport in the spin spiral ordering state. In addition, the magnetic field can gradually suppress the low-T peak but does not affect the high-T one; this further confirms that the low-T peak is originated from the magnon heat transport.

¹S. Park, Y. J. Choi, C. L. Zhang, and S-W.Cheong, Phys. Rev. Lett. **98**, 057601 (2007).