Investigation of the magnetic susceptibility of the disordered BEC system $NiCl_{0.85}Br_{0.15}$ - $4SC(NH_2)_2$ and $Ni_{0.85}Cd_{0.15}$ - $4SC(NH_2)_2$ at ultralow-temperatures

L. \mathbf{Yin}^a , C. Huan^a, N.S Sullivan^a, J.S. Xia^a, V. Zapf^b, A. Paduan-Filho^c, R. Yu^d, and T. Roscilde^e

^aNHMFL, Department of Physics, University of Florida

^bNHMFL, Los Alamos National Laboratories

^cI. Fisica, Universidade de Sao Paulo, Brazil

^dPhysics and Astronomy Dept, Rice University

^eLaboratoire de Physique - ENS Lyon

We report measurements of the magnetic susceptibility of a disordered BEC system of magnons for single crystals of NiCl_{0.85}Br_{0.15}-4SC(NH₂)₂ and Ni_{0.85}Cd_{0.15}-4SC(NH₂)₂. Both of them are the potential candidates for a Bose glass (BG) phase of the spins adjacent to a region of Bose-Einstein condensation (BEC). The BG to BEC phase is the bosonic analog of a metal-insulator transition for fermions. The measurements were carried out for temperatures down to 1mK and for applied magnetic fields up to 14.5 T. The results show that the critical fields H_c do not obey the conventional 3D universality class for a BEC, $H_c(T) - H_c(0) \sim T^{\alpha}$, where $\alpha \sim 1.5$. The values of α changes from ~ 1.5 above ~ 200 mK to $1.1 \sim 0.9$ below ~ 200 mK, indicating a crossover to possible BG behavior. This observed crossover behavior is in agreement with the numerical simulations of Quantum Monte Carlo in this system.