Transport properties of $La_{1-x}Ce_xCu_4Al$ alloys

A. Kowalczyk, M. Falkowski, and T. Toliński

Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

We report on the transport properties (thermal conductivity, electrical resistivity) of $La_{1-x}Ce_xCu_4Al$ ($0 \le x \le 1$) alloys. The hexagonal CeCu₅-type structure was confirmed by the powder X-ray diffraction technique. Susceptibility measurements give effective magnetic moments in a good agreement with the Ce³⁺ ion value. The analysis of the magnetic resistivity at low temperatures revealed that only CeCu₄Al shows a maximum in $\rho(T)$ typical of the Kondo lattice. The measured thermal conductivity of the La_{1-x}Ce_xCu₄Al compounds increases with increasing temperature. The scattering of electrons and phonons on the lattice imperfections is elastic and this mechanism is most important at low temperatures. In contrast, the phonon-electron and phonon-phonon interactions may have elastic as well as inelastic character and they are described by the normal and the Umklapp processes. A large reduced Lorentz number L/L_0 indicates that the dominant heat carries are phonons, and the spin scattering of charge carries does not play a significant role.

This work was supported by the funds for science in years 2009-2011 as a research project No. N N202 229537