Phase transitions in TbMnO₃

V. Dyakonov^a, A. Szytuła^b, R. Szymczak^a, E. Zubov^c, Z. Kravchenko^c, W. Bażela^d, and H. Szymczak^a

^aInstitute of Physics, PAS, 02-668 Warsaw, Al. Lotników 32/46, Poland.

^bM. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059, Kraków, Poland ^cA.A.Galkin Donetsk Physico-Technical Institute, NANU, 83114 Donetsk, R. Luxembourg str. 72, Ukraine.

^dInstitute of Physics, Technical University of Cracow, Podchor azych 1, 30-084 Kraków, Poland

Magnetic properties of TbMnO₃ multiferroic as a function of grain size, temperature and magnetic field have been studied. The nanosize (45, 60 and 70 nm) TbMnO₃ manganites were synthesized with a solgel method at 800, 850 and 900 °C temperatures. The TbMnO₃ film was grown onto the single crystal [001] SrTiO₃ substrate using magnetron sputtering technique. The peculiarities of magnetic ordering in polycrystalline, nanosize and film TbMnO₃ manganites were compared. Magnetization and the Nèel temperature corresponding to antiferromagnetic ordering of the Tb³⁺ sublattice decrease as the particle size is reduced. Magnetization of the TbMnO₃ film and specific heat of the nanosize samples exhibit anomalies related to the magnetic ordering of the Tb³⁺ and Mn³⁺ sublattices. The magnetic field and temperature dependences of the electric polarization of TbMnO₃ film have shown that the ferroelectric phase appears below 30 K in magnetic field H > 1T applied along both the *a* and *c* axis.