Low temperature magnetism of PrF₃ single crystal, micro- and nanopowders

M.S. Tagirov, E.M. Alakshin, A.S. Alexandrov, A.V. Egorov, R.R. Gazizulin, A.V. Klochkov, S.L. Korableva, V.V. Kuzmin, and A.M. Sabitova

Kazan (Volga region) Federal University, Kazan, Russia

The "PrF₃-liquid ³He" system is of interest because of the possibility for using the magnetic coupling between the nuclei of the two spin systems for the dynamic nuclear polarization of liquid ³He. The resonance magnetic coupling between liquid ³He nuclei and the ¹⁴¹Pr nuclei of microsized (45 mkm) Van Vleck paramagnet PrF_3 powder has been discovered by authors ¹. The series of nanoscopic samples (size 10 - 50 nm) of Van Vleck paramagnet PrF_3 were synthesized. The X-ray and HRTEM experiments showed high crystallinity of synthesized samples ². The NMR spectra of ¹⁴¹Pr in the synthesized PrF_3 powders were investigated. The simulations of ¹⁴¹Pr NMR spectra are in good agreement with experimental data. At the first time, NMR in zero magnetic field was carried out on PrF_3 samples (including nanosized powders) on a specially build pulsed NMR spectrometer.

This work is partially supported by the Ministry of Education and Science of the Russian Federation (FTP "Scientific and scientific - pedagogical personnel of the innovative Russia" GK- P900).

¹A.V. Egorov et al., JETP Lett. **86**, 416 (2007).

²M.S. Tagirov et al., J. Low. Temp. Phys. **162**, 645 (2011).