Electronic structure of Ta_2NiSe_5 as a candidate for excitonic insulators

T. Kaneko^a, T. Toriyama^a, T. Konishi^b, and Y. Ohta^a

^aDepartment of Physics, Chiba University, Chiba 263-8522, Japan

^bGraduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan

We make the electronic structure calculations of Ta_2NiSe_5 known as a new candidate for excitonic insulators where the semiconducting or semimetallic ground state becomes unstable against the coherent formation of excitons [1,2]. We use the generalized gradient approximation (GGA) in the density functional theory, where the Hubbard-type repulsive interaction is taken into account (GGA+U). We find that the system is metallic for small values of U but an indirect band gap opens for larger values of $U \simeq 3$ eV. A flat band appears around the Γ point of the Brillouin zone but the minimum of the gap occurs away from the Γ point. Our results for the band dispersion are in contrast to the previous tight-binding bands [3] but are in reasonable agreement with recent angle-resolved photoemission spectra [1]. We discuss possible origins of observed unusual properties [1-4] of this material. Details will be reported in Ref. [5].

References:

- [1] Y. Wakisaka et al., Phys. Rev. Lett. 103, 026402 (2009).
- [2] F. J. DiSalvo et al., J. Less-Common Met. 116, 51 (1986).
- [3] E. Canadell and M.-H. Whangbo, Inorg. Chem. 26, 3974 (1987).
- [4] S. A. Sunshine and J. A. Ibers, Inorg. Chem. 24, 3611 (1985).
- [5] T. Kaneko *et al.*, in preparation.