Spin-State Transition in $RCoO_3$ (R = La, Pr, and Nd): Single-Crystal ⁵⁹Co NMR Measurements

A. Shimokata, S. Yamada, Y. Shimizu, and M. Itoh

Department of Physics, Nagoya University, Nagoya, Japan

A thermally-induced transition from a nonmagnetic to a paramagnetic state, so-called spin-state transition, in $R \text{CoO}_3$ (R: rare earth) is a long-standing issue of strongly correlated electron system. It has attracted much interests whether the transition from a low-spin (S = 0) to a high-spin (S = 2) state takes place through an intermediate spin (S = 1) state. We address a microscopic study of the orbital state in $R \text{CoO}_3$ (R = La, Pr, and Nd) by single-crystal ⁵⁹Co NMR measurements. The ⁵⁹Co nuclear spin-lattice relaxation rate and Knight shift measurements revealed the spin-state transition with the critical slowing down of fluctuations at 50 K in LaCoO_3 . On the other hand, PdCoO_3 and NdCoO_3 exhibit no clear transition but a small continuous change in the local spin susceptibility at high temperatures above 300 K. Subtracting the contribution from the magnetic rare-earth spins to the ⁵⁹Co Knight shift, we obtained the magnetic hyperfine coupling constant between a ⁵⁹Co nuclear spin and 3d spins in the paramagnetic state with the finite 3d spin susceptibility in PrCoO_3 and NdCoO_3 . The hyperfine coupling tensors of PrCoO_3 and LaCoO_3 are axially symmetric and dominated by a sum of dipole hyperfine fields from the 3d orbitals theoretically expected in the high-spin state.