Theoretical Study of Resonant Inelastic X-ray Scattering Spectrum in Nickelates

K. Tsutsuia, T. Tohyamab, W. Koshibaec, and S. Maekawad

aSynchrotron Radiation Research Center, JAEA, Sayo, Japan
bYukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan
cCross-Correlated Materials Research Group (CMRG), RIKEN, Wako, Japan
dAdvanced Science Research Center, JAEA, Tokai, Japan; CREST, JST, Tokyo, Japan

The two-dimensional nickelate La\textsubscript{2-x}Sr\textsubscript{x}NiO\textsubscript{4} has received special attention as a reference system of high-T_c cuprates. The undoped nickelate ($x = 0$) has the charge-transfer gap in the optical conductivity. Upon doping of holes, a broad spectrum appears in the gap. We have shown theoretically that the broad spectrum comes from excitations to the low spin states.1 In the Ni K-edge resonant inelastic X-ray scattering (RIXS) measurement, the momentum-resolved charge excitations are obtained.2 In this study, we examine theoretically the RIXS spectra on nickelates by using numerically exact diagonalization techniques on the two-band Hubbard model. We also calculate other spectra such as the dynamical charge density function and discuss what excitations appear in the RIXS spectrum.