Theoretical Study of Resonant Inelastic X-ray Scattering Spectrum in Nickelates

K. $\mathbf{Tsutsui}^{a}$, T. Tohyama^b, W. Koshibae^c, and S. Maekawa^d

^aSynchrotron Radiation Research Center, JAEA, Sayo, Japan

^bYukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan

²Cross-Correlated Materials Research Group (CMRG), RIKEN, Wako, Japan

^dAdvanced Science Research Center, JAEA, Tokai, Japan; CREST, JST, Tokyo, Japan

The two-dimensional nickelate $La_{2-x}Sr_xNiO_4$ has received special attention as a reference system of high- T_c cuprates. The undoped nickelate (x = 0) has the charge-transfer gap in the optical conductivity. Upon doping of holes, a broad spectrum appears in the gap. We have shown theoretically that the broad spectrum comes from excitations to the low spin states.¹ In the Ni *K*-edge resonant inelastic X-ray scattering (RIXS) measurement, the momentum-resolved charge excitations are obtained.² In this study, we examine theoretically the RIXS spectra on nickelates by using numerically exact diagonalization techniques on the two-band Hubbard model. We also calculate other spectra such as the dynamical charge density function and discuss what excitations appear in the RIXS spectrum.

¹K. Tsutsui, W. Koshibae, and S. Maekawa, Phys. Rev. B **59**, 9729 (1999).
²E. Collart *et al.*, Phys. Rev. Lett. **96**, 157004 (2006); S. Wakimoto *et al.*, Phys. Rev. Lett. **102**, 157001 (2009); L. Simonelli *et al.*, Phys. Rev. B **81**, 195124 (2010).