Magnetic and magnetodielectric properties in frustrated Cu₂Te₂O₅Br₂

Y. P. Chin^a, S. Mukherjee^a, C. C. Chou^a, J. H. Zhang^a, C. C. Yeh^a, H. Berger^b, and H. D. Yang^{*a}

^aDepartment of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan, Republic of China.

^bInstitutes of Physics of Condensed Material, EPFL, Lausanne, Switzerland.

An intriguing magnetodielectric behavior is observed in geometrically frustrated spin-tetrahedal system $(Cu_2Te_2O_5Br_2)$. A strongly reduced magnetic transition temperature $T_N = 11.7$ K is found in comparison with a dominant magnetic exchange of 40 K. In the dielectric measurement, two main peaks are observed at around $T_1 \sim 40$ K and $T_2 \sim 80$ K. When applying magnetic field, both T_1 and T_2 decrease. The peak at T_1 might be due to the magnetic exchange interaction between Cu atoms. While, the peak at T_2 might be due to the ferroelectric phase transition, in which a remnant polarization is found to increase when temperature is lower than T_2 . The similar and different properties between $Cu_2Te_2O_5Br_2$ and its isostructural compounds are compared and discussed.