Novel ferromagnetic Kondo lattices Ce₃RhSi₃ and Ce₃IrSi₃

D. Kaczorowski^{*a*}, A. Lipatov^{*b*}, A. Gribanov^{*c*}, and Yu. Seropegin^{*c*}

^aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, P. O. Box 1410, 50-950 Wrocław, Poland

^bDepartment of Materials Science, Moscow State University, GSP-1, 119991 Moscow, Russia

^cDepartment of Chemistry, Moscow State University, GSP-1, 119991 Moscow, Russia

The physical properties of two novel Ce-based intermetallics Ce₃RhSi₃ and Ce₃IrSi₃ have been studied by means of magnetization, electrical resistivity and heat capacity measurements, performed down to 350 mK in magnetic fields up to 9 T. The compounds crystallize with an orthorhombic structure of the Y₃NiSi₃ type (space group *Immm*) that can be considered as a combination of AlB₂- and W-type units. There are two inequivalent sites for Ce atoms in the unit cell and both are occupied by trivalent ions, as inferred from a Curie-Weiss analysis of the magnetic susceptibility. The magnetic and electrical transport data distinctly manifest Kondo interactions with the characteristic temperature scale of about 6-10 K. Nevertheless, the two compounds order *ferromagnetically* at low temperatures, namely at $T_{\rm C} = 4.4$ K for Ce₃RhSi₃ and $T_{\rm C} = 10.5$ K for Ce₃IrSi₃. Moreover, the latter silicide undergoes a ferromagnetic-like order-order transition at $T_{\rm t} = 3$ K. In the ordered state, the electrical resistivity and the specific heat of both ternaries are governed by ferromagnetic spin-waves contribution. In turn, their low-temperature specific heat shows a large enhancement [C/T = 700 and 460 mJ/(mol K²) for the Rh- and Ir-containing phase, respectively], thus implying the formation of heavy-electron ground states.