Magnetization Process of S=1/2 Antiferromagnetic Trimer System

T. Asano^a, K. Matsuura^a, M. Sanda^a, H. Wada^a, J. Wang^b, A. Matsuo^b, Y. Narumi^b, and K. Kindo^b

^aDepartment of Physics, Kyushu University, Fukuoka 812-8581, Japan

^bInstitute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan

The complex spin system produced by ferromagnetic/antiferromagnetic coupled cluster (dimer, trimer, tetramer, ...) has demonstrated attractive magnetic properties depending on various magnetic interactions between the clusters. We have studied magnetization process in two kinds of S=1/2 antiferromagnetic trimer system with or without three-dimensional magnetic interaction between the trimers, $Cs_2Cu_3P_4O_{14}$ and $(C_5N_5H_6)_2\cdot Cu_3Cl_8\cdot 4H_2O$. The magnetization processes using a pulse magnetic field up to 56 T at 4.2 K exhibit a common one-third plateau that of saturation magnetization caused by antiferromagnetic trimer system. The all magnetization process of $(C_5N_5H_6)_2\cdot Cu_3Cl_8\cdot 4H_2O$ without the three-dimensional magnetic interaction between trimers system with antiferromagnetic interaction between trimers can be explained using a simple S=1/2 trimer system with antiferromagnetic interaction $(J/k_B\sim 20 \text{ K})$. However, the unexpected magnetization process of $Cs_2Cu_3P_4O_{14}$ with $T_N = 10$ K cannot be described by the localized trimer model. The anomaly of specific heat at 10 K in a zero field shifts to lower temperature with increasing applied magnetic field and cannot be observed in the plateau region. We present the magnetic phase diagram of $Cs_2Cu_3P_4O_{14}$ and the possibility of field-induced magnetic ordering under high magnetic field.