Magnetization Process near the Curie Temperature of an Itinerant Ferromagnet CoS₂

H. Nishihara^a, T. Harada^b, T. Kanomata^b, and T. Wada^a

^aFaculty of Science and Technology, Ryukoku University, Otsu 520-2194, Japan ^bFaculty of Engineering, Tohoku Gakuin University, Tagajo 985-8537, Japan

The field dependence of the magnetization of an itinerant ferromagnet close to the Curie temperature has received considerable interests recently in relation to the theory by Takahashi for a weakly ferromagnetic itinerant electron system¹. Experiments have been reported for ferromagnetic Heusler alloys, where the critical index delta has been observed to be nearly 5.0 for strongly ferromagnetic cases of Ni₂MnGa and Co₂CrGa rather than weakly ferromagnetic cases of Co₂TiGa and Co₂VGa². In this report, experimental results are presented for a typical itinerant ferromagnet, CoS₂ with a ferromagnetic moment of 0.85 Bohr magneton and a Curie temperature of 120 K up to an applied field of 50 kOe. The critical index delta has been obtained to be 5.0. The result is described by the theory by Takahashi rather than by a conventional molecular field theory. A reliable method is proposed for determining the Curie temperature of a ferromagnetic material using M⁴ versus H/M plot rather than a conventional Arrot plot.

¹Y. Takahashi, J. Phys. Soc. Jpn. **55**, 3553 (1986), Y. Takahashi, J. Phys.: Condense. Matter **13**, 6323 (2001).

²H Nishihara, Y Furutani, T Wada, T Kanomata, K Kobayashi, R Kainuma, K. Ishida, T Yamauchi, Journal of Superconductivity and Novel Magnetism **24** (2010) 679 and references therein.