Electronic States of Half-Metallic Chormium Oxides Proved by ⁵³Cr NMR

H. Takeda^a, Y. Shimizu^a, M. Itoh^a, M. Isobe^b, and Y. Ueda^b

^aDepartment of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan ^bInstitute for Solid State Physics, University of Tokyo, Kashiwa, Japan

Half-metallic chromium oxides with high-valence chromium ions attract new interests from the aspect of unusual electronic states, which lead to fascinating physical properties, in 3*d* transition metal oxides with the negative charge transfer. Recently, $K_2Cr_8O_{16}$ was reported to undergo an unusual transition from a half metal to an insulator at 95 K in the ferromagnetic phase below 180 K.¹ The ferromagnetic half-metallic state may be closely related to the electronic state as theoretically discussed on the half metal CrO_2 .² However, the electronic state of these chromium oxides remains an open issue. In this study, we have performed ⁵³Cr NMR measurements to clarify the local electronic state of $K_2Cr_8O_{16}$ and CrO_2 . In the ferromagnetic metal phase of both chromium oxides, we observed ⁵³Cr NMR spectra coming from several chromium sites which are inconsistent with one chromium site on tetragonal lattice, the hollandite structure (symmetry I4/m) of $K_2Cr_8O_{16}$ and the rutile structure ($P4_2mnm$) of CrO_2 . This anomalous electronic state is discussed with the metal-insulator transition in $K_2Cr_8O_{16}$.

¹K. Hasegawa *et al.*, Phys. Rev. Lett. **103**, 146403 (2009).
²M. A. Korotin *et al.*, Phys. Rev. Lett. **80**, 4305 (1998).