Effect of pressure on thermopower of $EuNi_2Ge_2$

T. Nakama^a, **K. Uchima**^b, A. Nakamura^a, N. Arakaki^a, C. Zukeran^a, S. Komesu^a, M. Takeda^a, Y. Takaesu^b, D. Nakamura^a, M. Hedo^a, and K. Yagasaki^a

^aFaculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
^bGeneral Education, Okinawa Christian Junior College, Nishihara, Okinawa, 903-0207, Japan

EuNi₂Ge₂ is antiferromagnetic below $T_{\rm N} \approx 30$ K with an effective moment $\mu_{\rm eff} \sim 7.7 \ \mu_{\rm B}$, indicating the 4f⁷ electron configuration (Eu²⁺) in the ground state. On the other hand, EuNi₂Si₂, where Eu is trivalent with the 4f⁶ electron configuration, indicates a temperature independent magnetic susceptibility. It is well known that the application of pressure and replacement Ge by Si have equivalent effects on the valence transition of EuNi₂Ge₂. In order to investigate the electronic state of EuNi₂Ge₂, we have simultaneously measured thermopower S and electrical resistivity ρ at the temperature range between 1.5 K and 300 K and under pressures up to 3 GPa. In the pressure region of $P \leq 2.3$ GPa, ρ increases with increasing temperature, and shows an anomaly in the form of a kink at the Neel temperature $T_{\rm N}$. S(T) also reveals a kink at $T_{\rm N}$. Both $\rho(T)$ and S(T) indicate a small pressure dependence at the low pressure range. However, $\rho(T)$ and S(T) curves in the low temperature region suddenly changes its feature at P > 2.3 GPa, where the magnetic ordering disappears. ρ linearly decreases with decreasing temperature, and shows a sudden drop at the valence transition temperature $T_{\rm v} \approx 30$ K. S(T) also reveals a drastic increase at $T_{\rm v}$, changing its sign from negative to positive around 35 K, and takes maximum at $T \approx 7$ K. The thermal hysteresis was clearly observed in both $\rho(T)$ and S(T) curves around $T_{\rm v}$.