Magnetic Field Dependence of Specific Heat in Clinoatacamite Cu₂(OH)₃Cl

H. Morodomi^a, Y. Inagaki^a, T. Kawae^a, M. Hagihala^b, and X.G. Zheng^c

^aDepartment of Applied Quantum Physics, Kyushu University, Fukuoka, Japan ^bInstitute for Solid States Physics University of Tokyo Chiba, Japan ^cDepartment of Physics, Saga University, Saga, Japan

We have performed the specific heat study in a new geometrically frustrated system, clinoatacamite $Cu_2(OH)_3Cl$, with cornersharing tetrahedrons of the Cu^{2+} ions with S=1/2 Heisenberg spins. At H=0 T, two anomalies are observed at $T_1=18$ K and $T_2=6.2$ K. The specific heat decreases rapidly below T_2 and shows no anomaly down to T=150 mK despite the existance of the spin fluctuation found in the μ SR experiments. As the magnetic field increased, the sharp peak at T_2 is broadened and shows a small reentrant behavior in the T-H phase diagram. On the other hand, the peak at T_1 shows no obvious change up to H=5 T. The entropy at T_1 is estimated as ~ 0.35 Rln2. These features may be caused by the two demensional nature of the kagome antiferromagnets which are weakly coupled via Cu^{2+} ions at the triangular sites located between the Cu^{2+} kagome layers.

¹X.G.Zheng, H.Kubozono, K.Nishiyama, W.Higemoto, T.Kawae, A.Koda and C.N.Xu, Phys. Rev. Lett. **95**, 057201 (2005)