Transport properties in spin-orbit Mott insulator Ba₂IrO₄ under high pressure

H. Okabe^{*a*, *c*}, N. Takeshita^{*b*}, M. Isobe^{*a*}, E. Takayama-Muromachi^{*a*}, T. Muranaka^{*c*}, and J. Akimitsu^{*c*}

^aNational Institute for Materials Science (NIMS), Japan

^bNational Institute of Advanced Industrial Science and Technology (AIST), Japan

 c Department of Physics and Mathematics, Aoyama Gakuin University, Japan

The recent findings of the novel Mott insulating state in $\text{Sr}_2 \text{IrO}_4^{-1}$ have developed a new research field on solid-state physics. The cooperation of the large spin-orbit (SO) interaction and the moderate on-site Coulomb interaction between 5*d* electrons yields $J_{\text{eff}} = 1/2$ Mott ground state, similar to Mott states in parent materials of high- T_c cuprates such as La₂CuO₄. Recently, we successfully synthesized a novel layered iridate Ba₂IrO₄, which is isostructural to Sr_2IrO_4 , but has flat IrO₂ square planar lattice with straight Ir-O-Ir bonds.

In this presentation, we report on results of the electric resistivity (ρ) under pressure of up to 15 GPa. Ba₂IrO₄ is an insulator at ambient pressure, however undergoes a phase transition to a metallic state above 13.8 GPa. The temperature dependence of ρ is well-described by the Mott variable-range-hopping regime in the insulating side. However, in the metallic side, the non-Fermi-liquid behavior was observed below ~20 K. These results indicate that the both the disorder and the electronic correlation contribute to the transport property of Ba₂IrO₄. Our sample is probably located on the verge of the phase boundary between the Anderson and the Mott insulator.

¹B. J. Kim *et al.*, Phys. Rev. Lett. **101**, 076402 (2008).