Magnetic ordering in spin-orbit Mott insulator Ba_2IrO_4 probed by μSR

H. Okabe^{a, d}, M. Isobe^a, E. Takayama-Muromachi^a, A. Koda^{b, c}, S. Takeshita^b, M. Hiraishi^c, M. Miyazaki^c, R. Kadono^{b, c}, Y. Miyake^{b, c}, and J. Akimitsu^d

^aNational Institute for Materials Science (NIMS), Japan

^bInstitute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Japan ^cDepartment of Materials Structure Science, The Graduate University for Advanced Studies, Japan ^dDepartment of Physics and Mathematics, Aoyama Gakuin University, Japan

The magnetic ground state of novel spin-orbit Mott insulator Ba_2IrO_4 has been investigated by muonspin rotation/relaxation (μ SR) technique. The amplitude of the zero-field μ SR signal rapidly decays with decreasing temperature from 300 K to 240 K. We found that the signal oscillates due to the muon-spin precession below 240 K. It clearly indicates that there exists a coherent internal magnetic field induced by long-range ordered spins at low temperatures. It means that the magnetic ground state in Ba_2IrO_4 is an antiferromagnetic long-range ordered state.

The internal local field obtained from the precession frequency of the time spectra indicates that the effective magnetic moment of the iridium ions is estimated to be $|\mu| = 0.34(4) \mu_{\rm B}/\text{Ir-atom}$. It is surprising that the moment size of the iridium ions is much smaller than the integer moment $1\mu_{\rm B}$ expected in the case of $J_{\rm eff} = 1/2$. The moment reduction is probably attributed to a low-dimensional quantum spin fluctuation with large intra-plane antiferromagnetic correlation |J|.