Developments of Multi-Extreme Terahertz ESR System at Low Temperature

H. Ohta^{*a*}, S. Okubo^{*a*}, E. Ohmichi^{*b*}, and T. Sakurai^{*c*}

^aMolecular Photoscience Research Center, Kobe University, Kobe, Japan

^bGraduate School of Science, Kobe University, Kobe, Japan

^cCenter for Supports to Research and Education Activities, Kobe University, Kobe, Japan

Recent developments of multi-extreme terahertz ESR in Kobe will be presented. Our system covers the frequency region between 0.03 and 7 THz and the temperature region between 1.8 and 300 K.¹ This system can be combined with multi-extreme conditions such as the pulsed magnetic field up to 55 T^2 and the high pressure up to 1.4 GPa using the transmission type piston cylinder pressure cell.³ As an example, terahertz ESR results of multiferroic material CuO at low temperature will be shown. Finally another development of a highly-sensitive micro-cantilever terahertz ESR system at low temperature using a torque method will be also discussed.⁴

¹H. Ohta, et al., J. Phys. Soc. Jpn. **72**, Supplement B 26 (2003).

²H. Ohta, et al., J. Phys.: Conf. Series **51**, 611 (2006).

³T. Sakurai, et al., J. Phys.: Conf. Series **215**, 012184 (2010).

⁴H. Ohta and E. Ohmichi, Appl. Magn. Reson. **37**, 881 (2010).