R-site randomness effect on spin/orbital order in perovskite RVO_3

R. Fukuta^a, K. Hemmi^a, S. Miyasaka^a, S. Tajima^a, D. Kawana^b, K. Ikeuchi^b, Y. Yamasaki^b, A. Nakao^b, H. Nakao^b, Y. Murakami^b, and K. Iwasa^c

^aDepartment of Physics, Osaka University, Osaka, Japan

^bCondensed Matter Research Center and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Japan ^cDepartment of Physics, Tohoku University, Sendai, Japan

Perovskite RVO_3 (R: rare earth elements or Y) has orbital degrees of freedom between d_{yz} and d_{zx} orbitals in V³⁺ ions, and shows two types of spin/orbital order: G-type orbital order (G-OO) accompanied with C-type spin order (C-SO), and C-OO with G-SO. In this system, the transition temperature of each spin/orbital order depends on the R-site ionic radius¹ and structural randomness caused by the size mismatch of the cations at the R-site².

We have investigated the *R*-site randomness effect on spin/orbital order in RVO_3 with several *R*-site ionic radius. In YVO_3 and $EuVO_3$ with the small *R*-site ionic radius and located near the phase boundary¹, the randomness suppresses C-SO/*G*-OO, while it stabilizes the other SO/OO. By the neutron and resonant X-ray scattering measurements, the other order was confirmed as G-SO/*C*-OO. In NdVO₃ with large *R*-site ions, however, C-SO/*G*-OO is so stable that the randomness cannot induce the other SO/OO.

¹S. Miyasaka *et al.*, Phys. Rev. B, **68**, 100406(R) (2003).
²J. -Q. Yan *et al.*, Phys. Rev. Lett, **99**, 197201 (2007).