Effect of nonstoichiometric aluminum composition on magnetic properties of Fe_2VA1 system

F. Ishikawa^a, Y. Okawara^a, A. Ohmura^b, A. Nakayama^b, Yuh Yamada^c, T. Naka^d, and A. Matsushita^d

^aGraduate School of Science and Technology, Niigata University, Niigata, Japan ^bCenter for Transdisciplinary Research, Niigata University, Niigata, Japan ^cDepartment of Physics, Niigata University, Niigata, Japan ^dNIMS, Ibaraki, Japan

Heusler-type Fe₂VAl compound shows semiconductor-like conductivity up to 1300 K and is known as a semimetal with a pseudo-gap at the Fermi level. Magnetic susceptibility of Fe₂VAl shows a Curie-Weiss-like behavior whereas band calculations tell that Fe₂VAl is nonmagnetic. The magnetic moment in Fe₂VAl arises from magnetic Fe cluster, caused by a wrong occupation of V sites by Fe atoms, with a localized nature. Recently, however, Sato *et al.* reported that itinerant ferromagnetic behavior of Fe₂VAl_{0.95} with Curie temperature $T_c = 33$ K.¹ They suggested that the Al site with Fe and V atoms results in itinerant ferromagnetism with a low carrier density.

In this study, we have prepared polycrystalline samples of $\text{Fe}_2\text{VAl}_{1\pm\delta}$ ($\delta < 0.06$) with nonstoichiometric aluminum composition and measured magnetization by a SQUID magnetometer to clarify the critical composition of Al to induce itinerant magnetism. With decreasing Al composition up to $\delta = -0.03$, both Curie temperature and susceptibility at 5 K increased and then decreased below $\delta = -0.04$.

¹K. Sato *et al.*, Phys. Rev. B **82**(2010)104408.