Magnetic phase separation in $Eu_{1-x}Ca_xB_6$

V. Glushkov^a, A. Bogach^a, A. Kuznetsov^b, I. Sannikov^b, M. Anisimov^a, S. Demishev^a, N. Samarin^a, V. Ivanov^a, A. Dukhnenko^c, A. Levchenko^c, N. Shitsevalova^c, and N. Sluchanko^a

^aA.M.Prokhorov General Physics Institute of RAS, 38, Vavilov str., Moscow 119991, Russia ^bNational Research Nuclear University MEPhI, 31, Kashirskoe Shosse, Moscow, 115409 Russia ^cI. Frantsevich Institute for Problems of Materials Science NAS, 3, Krzhyzhanovsky str., 03680, Kiev, Ukraine

The magnetic properties of $\operatorname{Eu}_{1-x}\operatorname{Ca}_x\operatorname{B}_6$ ($0 \le x \le 0.26$) single crystals have been studied in the wide range of temperatures (1.8-300 K) and magnetic fields (up to 5 T). The effective magnetic moment of Eu^{2+} was found to decrease from the free ion value $\mu_{\text{eff}} \approx 7.93 \mu_{\text{B}}$ to $\mu_{\text{eff}} \approx 7.3 \mu_{\text{B}}$ (μ_{B} - Bohr magneton) when Ca doping increases crossing the critical concentration of metal-insulator transition (MIT) $x_c \sim 0.2.^1$ At the same time, a universal behavior of magnetic susceptibility $\chi(T) \propto (T - \Theta)^{\alpha}$ ($\alpha = 1.5$) was observed near the Curie temperature in the paramagnetic phase of both metallic ($x < x_c$) and dielectric ($x > x_c$) compositions of $\operatorname{Eu}_{1-x}\operatorname{Ca}_x\operatorname{B}_6$. The anomalous magnetic properties of the Ca-doped compounds are discussed in terms of the magnetic and electronic phase separation realized in the vicinity of the concentration driven quantum MIT.²

Support by RFBR 11-02-00623 project is acknowledged.

¹V. Glushkov et al., JETP **111**, 246 (2010).

²V.M. Pereira et al., Phys. Rev. Lett. **93**, 147202 (2004).