Inelastic Neutron Scattering Study of Mg and Al Doped Two-Dimensional Triangular-Lattice Antiferromagnet $CuCrO_2$

R. Kajimoto* a , K. Nakajima a , S. Ohira-Kawamura a , Y. Inamura a , K. Kakurai b , M. Arai a , T. Hokazono c , S. Oozono c , and T. Okuda c

 ${\rm CuCrO_2}$ has triangular-lattice layers of magnetic ${\rm Cr^{3+}}$ ions separated from each other by non-magnetic layers of ${\rm Cu^+}$ ions, which makes this compound a quasi two-dimensional (2D) triangular-lattice antiferromagnet with S=3/2. Recently, it was found that small amount of element substitution strongly affects magnetic and transport properties.¹

In the present study, we have studied magnetic excitations in Mg and Al doped $CuCrO_2$ by inelastic neutron scattering using the chopper spectrometer AMATERAS at J-PARC. We will discuss the substitution effect on the spin dynamics in comparison with non-doped compound as well as Ag doped compound.²

 $[^]a\mathrm{J\text{-}PARC}$ Center, Japan Atomic Energy Agency, Tokai, Japan

^bQuantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Japan

^cDepartment of Nano-Structures and Advanced Materials, Kagoshima University, Kagoshima, Japan

^{*}Present address: Research Center for Neutron Science and Technology, CROSS, Tokai, Japan

¹T. Okuda *et al.*, Phys. Rev. B **72**, 144403 (2005); Phys. Rev. B **77**, 134423 (2008); J. Phys. Soc. Jpn. **78**, 013604 (2009); J. Phys. Soc. Jpn. **80**, 014711 (2011).

²R. Kajimoto *et al.*, J. Phys. Soc. Jpn. **79**, 123705 (2010).