Spin-glass Transition in Bond-disordered Heisenberg Antiferromagnets Coupled with Local Lattice Distortions on a Pyrochlore Lattice

H. Shinaoka^a, Y. Tomita^b, and Y. Motome^c

^aNanosystem Research Institute, AIST, Tsukuba, 305-8568, Japan

^bInstitute for Solid State Physics, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan ^cDepartment of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Motivated by puzzling characteristics of spin-glass transitions widely observed in pyrochlore-based frustrated materials, we investigate effects of coupling to local lattice distortions in a bond-disordered antiferromagnet on the pyrochlore lattice¹ by using a recently developed classical Monte Carlo algorithm.^{2,3} We show that the spin-glass transition temperature $T_{\rm f}$ is largely enhanced by the spin-lattice coupling b. As a consequence, $T_{\rm f}$ becomes almost independent of Δ and is set by b in a wide range of the disorder strength Δ . The critical property of the spin glass transition is indistinguishable from that of the canonical Heisenberg spin glass in the entire range of Δ . These peculiar behaviors are ascribed to a modification of the degenerate manifold from continuous to semidiscrete one by the spin-lattice coupling. The results reproduce qualitatively many aspects of the spin-glass transition observed in the pyrochlore-based geometrically frustrated magnets such as $(\text{La}_x Y_{1-x})_2 \text{Mo}_2 \text{O}_7$ and $(\text{Zn}_{1-x} \text{Cd}_x) \text{Cr}_2 \text{O}_4$.

¹H. Shinaoka, Y. Tomita, and Y. Motome, arXiv:1010.5625.

²H. Shinaoka and Y. Motome, Phys. Rev. B 82, 134420 (2010).

³H. Shinaoka, Y. Tomita, and Y. Motome, arXiv:1102.1222.