Theoretical study of $J_{\text{eff}} = 1/2$ Mott insulator in Ir oxides: cooperation of a strong spin-orbit coupling and local electron correlations

T. Shirakawa^{a,b,c}, H. Watanabe^{a,b,c}, and S. Yunoki^{a,b,c}

^aComputational Condensed Matter Physics Laboratory, RIKEN ASI, Wako, Saitama 351-0198, Japan
^bComputational Materials Science Research Team, RIKEN AICS, Kobe, Hyogo 650-0047, Japan
^cCREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

Recent experiments on $\text{Sr}_2 \text{IrO}_4^{-1}$ have revealed a novel Kramer's doublet $J_{\text{eff}} = S - L = 1/2$ Mott insulator induced by a strong spin-orbit coupling (SOC) and local Coulomb interactions (U). To clarify the nature of electronic and magnetic properties of this system, we have studied a two-dimensional three-band Hubbard model consisting of the t_{2g} manifold of 5d electrons with SOC.² The exact diagonalization and variational cluster approximation³ based on the self-energy functional theory⁴ are used to calculate various physical quantities including the single-particle spectra. Our results of the projected single-particle spectra onto $J_{\text{eff}} = 1/2$ and $J_{\text{eff}} = 3/2$ states have revealed a physical picture of the $J_{\text{eff}} = 1/2$ Mott insulator. We also examine the roles of SOC and U to stabilize this novel $J_{\text{eff}} = 1/2$ Mott insulator.

- ¹B. J. Kim, *et.al.*, Science **323**, 1329 (2009)
- ²H. Watanabe, T. Shirakawa, and S. Yunoki, Phys. Rev. Lett. **102**, 216410 (2010)
- ³M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. **91**, 206402 (2003)
- ⁴M. Potthoff, Eur. Phys. J. B **32**, 429 (2003)