Magnetic cooling through quantum criticality

M. Lang^{*a*}, B. Wolf^{*a*}, Y. Tsui^{*a*}, D. Jaiswal-Nagar^{*a*}, U. Tutsch^{*a*}, A. Honecker^{*b*}, A. Prokofiev^{*c*}, and W. Assmus^{*a*}

^aPhysics Institute, Goethe University, SFB/TR 49, Frankfurt, Germany ^bInst. of Theor. Phys., Georg-August University, Göttingen, Germany ^cInst. of Solid State Phys., Vienna University of Techn., Austria

The proximity of a quantum critical point can significantly affect a material's thermodynamic properties even at finite temperatures. Here we demonstrate that the accumulation of entropy around a *B*-induced quantum critical point opens up new possibilities for realizing a very efficient low-*T* magnetic coolant. For the proof of principle, we focus on a simple model substance - a Cu^{2+} -containing coordination polymer $[\text{Cu}(\mu-\text{C}_2\text{O}_4)(4\text{-aminopyridine})_2(\text{H}_2\text{O})]_n$ - a very good realization of a spin-1/2 antiferromagnetic Heisenberg chain with a weak intrachain coupling constant $J/k_B = (3.2 \pm 0.1)$ K, corresponding to a saturation field $B_s = 4.09$ T. To investigate its potential as a coolant, demagnetization experiments have been performed from $B_i > B_s$ under almost adiabatic conditions. While the cooling process is initially linear in *B* - such as is seen in standard paramagnets - it becomes superlinear upon approaching the QCP at B_s . In addition, the quantum critical system excels by its high efficiency $\Delta Q_c/\Delta Q_m$, which exceeds the figures found in state-of-the-art paramagnetic coolants by a factor 2-3. Here ΔQ_c is the heat the material can absorb after demagnetization to a final field B_f , and ΔQ_m the heat of magnetization released to a precooling stage held at a temperature T_i , the initial temperature of the cooling process.