Nb-substitution effects in half-metallic double perovskite Ba_2FeMoO_6

K. Yoshida^a, K. Watanabe^b, and H. Shimizu^b

^aUniversity Education Center, Ibaraki University, Mito, Ibaraki, Japan

^bDepartment of Electronics and Computer Science, Tokyo University of Science, Yamaguchi, Sanyo-Onoda, Yamaguchi, Japan

We studied systematic changes of the structural, electric and magnetic properties in half-metallic double perovskite Ba₂FeMo_{1-x}Nb_xO₆ with $0 \le x \le 1$. Here, the substitution of Nb⁵⁺ (4d⁰) for Mo⁵⁺ (4d¹) is expected to diminish the spin-polarized carriers which play a key role in appearance of ferromagnetism above room temperature in the double perovskite. Polycrystalline samples were prepared by a conventional solid-state reaction method in reduced atmosphere of H₂(5%)/Ar. While crystal structure holds cubic $Fm\bar{3}m$ up to x=1.0, the lattice parameter at room temperature linearly increases with x. On the other hand, the Curie temperature $T_{\rm C}$ linearly decreases with x. No trace of the ferromagnetic order is observed above x = 0.8, which is accompanied by disappearance of metallic character in the ground state judging from divergence in resistivity toward 0 K. These results indicate the strong correlation between the itinerant electrons and occurrence of the ferromagnetic state. The decline of $T_{\rm C}$, $dT_{\rm C}/dx \sim 300$ K/Nb, is one order of magnitude larger than that for A-site substitutions of such as La and Na. In addition, $T_{\rm C}$ is almost insensitive to the Fe-substitution in the ferromagnetic region of Sr₂Fe_{1+x}Mo_{1-x}O₆. Therefore, the alternative order of Fe and Mo forms a peculiar platform for the ferromagnetism above room temperature.