Possible new temperature phase observed in GeCo₂O₄ spinel by high field ESR

T. Yamasaki^a, S. Okubo^b, H. Ohta^b, T. Sakurai^c, S. Ikeda^d, H. Oshima^e, M. Takahashi^e, S. Hara^f, K. Tomiyasu^g, and T. Watanabe^h

^aGraduate School of Science, Kobe University, Kobe, Japan

^bMolecular Photoscience Research Center, Kobe University, Kobe, Japan

^cCenter for Supports to Research and Education Activities, Kobe University, Kobe, Japan

^dNational Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

^eInstitute of Material Science, University of Tsukuba, Tsukuba, Japan

^fDepartment of Physics, Chuo University, Tokyo, Japan

^gDepartment of Physics, Tohoku University, Sendai, Japan

^hDepartment of Physics, College of Science and Technology, Nihon University, Tokyo, Japan

Magnetic ions Co^{2+} in spinel compound GeCo_2O_4 from pyrochlore structure. As a result, three dimensional frustration is expected in GeCo_2O_4 . Temperature dependence of specific heat and the magnetic susceptibility show anomalies at 20.6K due to AF transition. To investigate spin dynamics, high frequency ESR measurements of GeCo_2O_4 for B//[100] is performed using the pulsed magnetic field. ESR spectra drastically change at $T_N = 20.6\text{K}$ and 3K. It strongly suggests that new temperature phase exists below 3K. Possible new temperature phase will be discussed in connection with this resonance.

References J. C. Lashley *et al.*, Phys. Rev. **B**. 78 (2008) 104406