Spin-Peierls transition in $TiPO_4$

R. K. Kremer^a, J. M. Law^a, C. Hoch^a, R. Glaum^b, M.-H. Whangbo^c, J. Kang^c, C. Lee^c, I. Heinmaa^d, and R. Stern^d

^aMax Planck Institute for Solid State Research, Stuttgart, Germany

^bInstitut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany ^cDepartment of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, U.S.A. ^dNational Institute Of Chemical Physics And Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia

We investigated the magnetic and structural properties of the quasi-one dimensional $3d^1$ -quantum chain system TiPO₄ ($J \sim 965$ K) by magnetic susceptibility, heat capacity, ESR, x-ray diffraction, NMR measurements, and by density functional calculations. TiPO₄ undergoes two magnetostructural phase transitions, one at 111 K and the other at 74 K. Below 74 K, NMR detects two different ³¹P signals and the magnetic susceptibility vanishes, while density functional calculations evidence a bond alternation of the Ti...Ti distances within each chain. Thus, the 74 K phase transition is a spin-Peierls transition which evolves from an incommensurate phase existing between 111 K and 74 K.