Elastic Constants of NdCu₂Ge₂

N. Sanada, T. Yoshioka, R. Watanuki, and K. Suzuki

Department of Advanced Materials Chemistry, Yokohama National University, Yokohama, Japan

The rare-earth compound NdCu₂Ge₂ crystallizes into the tetragonal ThCr₂Si₂ type structure. Recently, Shigeoka et al. reported the physical properties of NdCu₂Ge₂. The magnetic susceptibility along the *c*-axis shows a cusp-like anomaly at $T_{\rm N} = 4.7$ K. On the other hand, those in the *ab*-plane increase even below $T_{\rm N}$ and no clear anomaly is detected around $T_{\rm N}$.¹ These results imply that the degeneracy of the internal degrees of freedom still exists below $T_{\rm N}$. We consider that this characteristic magnetic transition in NdCu₂Ge₂ is similar to the "component-separated magnetic transition" in DyB₄² or TbCoGa₅.³ Because the degeneracy of quadrupolar degrees of freedom plays an important role in the magnetic transitions in DyB₄ and TbCoGa₅, it is necessary to investigate the behavior of the quadrupole moment in NdCu₂Ge₂. We grew single crystals of NdCu₂Ge₂ and measured their magnetic susceptibility, specific heat, and elastic constants. The magnetic entropy change reaches $R\ln 2$ at ~ 6 K and $R\ln 8$ at ~ 72 K with increasing temperature. This result indicates that the crystalline electric field ground state of NdCu₂Ge₂ is a Kramers doublet. In addition, the results of the elastic constants suggest that the degeneracy of quadrupolar degrees of freedom should not remain below $T_{\rm N}$.

- ¹T. Shigeoka et al., Physica B **346-347**, 117 (2004).
- ²R. Watanuki et al., J. Phys. Soc. Jpn. **74**, 2169 (2005).
- ³N. Sanada et al., J. Phys. Soc. Jpn. **78**, 073709 (2009).