Size effect on magnetic properties of LiFePO₄ particles

R. Puzniak^{*a*}, J. Wieckowski^{*a*}, M. Gutowska^{*a*}, A. Szewczyk^{*a*}, J. Molenda^{*b*}, K. Swierczek^{*b*}, and W. Zajac^{*b*}

^aInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02-668 Warsaw, Poland ^bFaculty of Energy and Fuels, AGH University of Science and Technology, Aleja Mickiewicza 30, PL-30-059 Krakow, Poland

Fine tuning of the LiFePO₄ structure and/or of valance of iron ions can change significantly magnetic properties of LiFePO₄, a candidate material for electrodes in rechargeable Li-ions batteries. It is known that partial lithium extraction from LiFePO₄ affects its intrinsic magnetic properties, leading to an increase of the Néel temperature from 50 K to 125 K (A. Ait-Salah et al., Z. Anorg. Allg. Chem. 632 (2006) 1598). We found for the particles of LiFePO₄ the appearance of an additional antiferromagnetic transition at 125 K as well as the presence of a minor phase showing a spontaneous magnetization with T_C above room temperature along with the presence of a main antiferromagnetic phase, characteristic of a bulk LiFePO₄ with T_N of about 50 K. Importantly, the transition at 125 K can be suppressed by relatively small magnetic field of the order of 0.3 T. We attribute the observed behavior to the electronic and/or structural differences between the outer layers and the interior of the LiFePO₄ particles.